INFRASTRUKTURTAG MÜHLDORF AM INN

HYDROLOGISCHE GRUNDLAGEN,
INTEGRALE HOCHWASSERSCHUTZKONZEPTE
MODELLIERUNG VON STURZFLUTEN

Stefan Gamperer - Dipl. Ing. Landschaftsplaner, Akademischer Geoinformatiker Alexander Reindl - Dipl. Ing. (FH) Bauingenieur

Dr. Tibor Molnar Landschaftsplaner, Akademischer Geoinformatiker

Ingenieurbüro

Behringer & Partner

Mühldorf am Inn

STEINZEUG

Siedlungswasserwirtschaft
Hydraulische Nachweise
Straßen- & Brückenbau
Baulanderschließung
Kommunales GIS
Sanierungen
Wasserbau
SiGeKo

www.ib-behringer.de

PROBLEMATIK ZUKÜNFTIG !!KLIMAWANDEL!!

Auszug aus dem Klima Report 2015 Bayern:

"Der Klimawandel äußerte sich in Bayern in der Vergangenheit durch einen allgemeinen Temperaturanstieg, eine Umverteilung der innerjährlichen Niederschläge, eine Tendenz zur Zunahme von Starkniederschlägen und zur Abnahme der Schneebedeckung…"

Auszug aus dem Klima Report 2015 Bayern

BIS INS JAHR 2100 IN BAYERN

ANSTIEG DER TAGE MIT NIEDERSCHLAGSMENGEN VON > 15 mm/Tag +40%

Regionale Klimamodelle zeigen eine mögliche Entwicklung Auszug aus dem Klima Report 2015 Bayern

ERKENNEN BEWERTEN HANDELN

- Niederschlag von befestigten und bebauten Flächen gilt rechtlich als Abwasser (§54 Wasserhaushaltsgesetz)
- Kommunen sind verantwortlich f
 ür die Daseinsvorsorge und die Gefahrenabwehr
- Haus- Grundstückseigentümer haben eine Selbstverpflichtung zum Objektschutz

ERKENNEN

RISIKOKARTEN, ÜBERSCHWEMMUNGSGRENZEN, ETC.
BEI HOCHWASSER SCHON SEHR UMFANGREICH
VORHANDEN

VERGLEICHBARE DATEN FÜR URBANE STURZFLUTEN BISHER NICHT VORHANDEN, ODER NICHT FREI ZUGÄNGLICH

BEWERTEN / HANDELN

INTEGRALE HOCHWASSERSCHUTZ- UND RÜCKHALTEKONZEPTE

- Untersuchung eines kompletten Einzugsgebietes oberhalb der Hochwassergefährdung
- Durch die Kombination aus natürlichem Rückhalt, technischem Schutz und Vorsorge einen Schutz vor einem 100 j\u00e4hrlichen Hochwasser erreichen
- Verbesserung der Gewässergüte und Gewässerökologie,
 Verringerung der Bodenerosion, Wiederherstellung des natürlichen Wasserhaushaltes

INTEGRALE HOCHWASSERSCHUTZ-UND RÜCKHALTEKONZEPTE UND DEREN UMSETZUNG SIND FÖRDERFÄHIG

BEWERTEN / HANDELN

SIMULATIONEN VON URBANEN STURZFLUTEN

- Darstellung von Fließwegen
- Überschlägige Ermittlung von Wassertiefen und Mengen
- Detailschärfe je nach Bedarf, z.B. Simulation Dammbruch
- Ausarbeiten von Risikokarten

Infrastrukturtag in Ihrer Region

Abwassernetze und Hochwasserschutz
Mühldorf am Inn
11. Oktober 2016

Integrale Hochwasserschutzkonzepte Hydrologische Grundlagen

Dipl.-Ing. Dr. techn. Habil. Tibor Molnar

- In kleinen Gebieten als Folge starker konvektiver Niederschläge auftretendes
- kurz andauerndes Hochwasser mit hohem Scheitelwasserstand
- Sturzfluten werden vor allen in Gebieten mit
 - Mediterranem
 - semiaridem oder
 - aridem Klima

Sowie - in letzten Zeiten immer häufiger - in Gebieten mit

 kontinentalem Klima beobachtet.

(http://www.spektrum.de/lexikon/geowissenschaften/sturzflut/15963)

2D-Modellierung

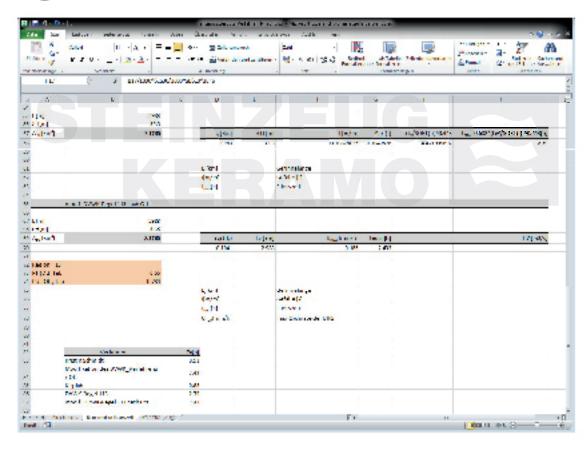
Erforderliche Werkzeuge zur 2D-Modellierung

- DGM, hoch aufgelöst
- Geometrie der Gewässer
- Hydraulische Parameter des 2D-Modells
- Anfangsbedingungen zur Modellierung, wie
 - Wasserspiegellage(n) in den mit einander korrespondierenden Gewässern
 - Durchflussganglinie(n), die die Überflutung auslöst
- Hydro_As-2D, TELEMAC

Durchflussganglinie(n)

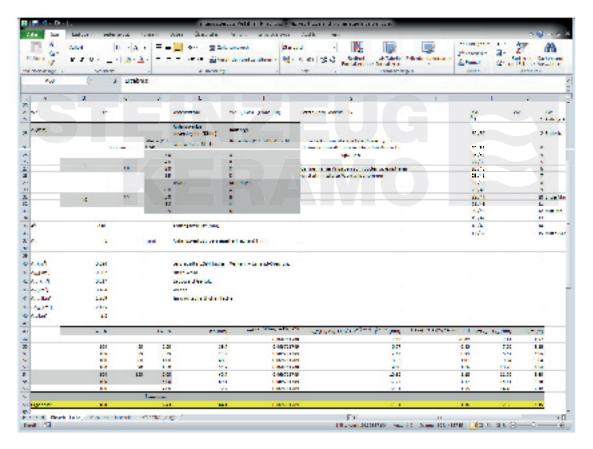
Herleitung der HQ₁₀₀(t) Ganglinie

- die Herleitung der HQ₁₀₀(t) Ganglinie ist nicht trivial
- In den kleinen EZG's sind keine hydrometeorologische Aufzeichnungen vorhanden
- Praktisch keine hydrologische Modellierung mit mathematischen Modellen der Hydrologie wie
 - LARSIM
 - NAM (MikeZero; DHI),
 - USGS Precipitation Runoff Modeling System (PRMS) HBV
 - WaSiM (Dr. Schulla Dr. Jasper, ch)
 -

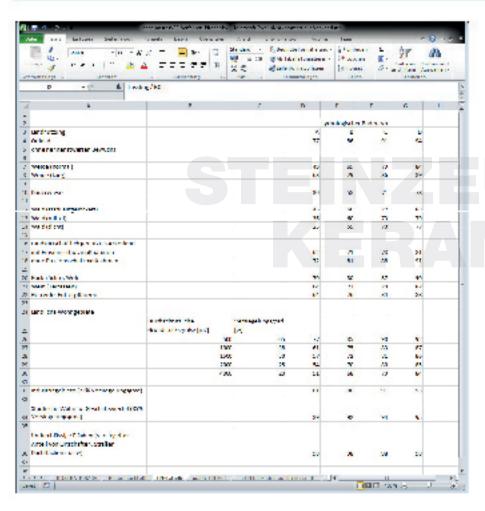

ist möglich, da die erforderlichen hydrometeorologischen Daten fehlen

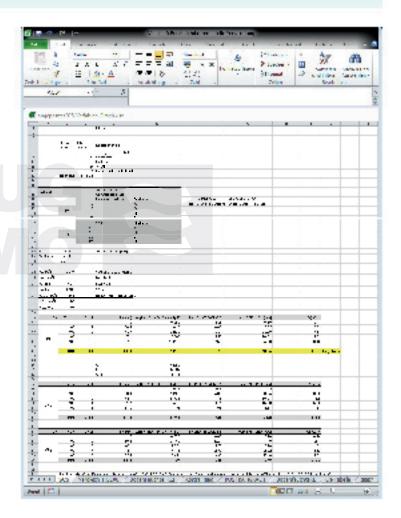
Wie kann HQ100(t) doch ermittelt werden(?):

- LUTZ-Verfahren
- SCS-Verfahren (Soil Conservation Service)


Vorgehensweise zur Herleitung der Durchflussganglinie

Ermittlung der Konzentrationszeit




LUTZ - Verfahren

Ermittlung von HQ₁₀₀

SCS - Verfahren

Auswahl des hydrologischen Modells

Kriterien:

- keine hydro-meteorologischen Daten erforderlich
- robustes Modell mit physikalischem Hintergrund
 - Landnutzung im EZG
 - Bodenarten mit Raumbezug im EZG
 - Digitales Geländemodell (DGM)
 - einfache Handhabung des Modells
- frei verfügbares Modell
- Das Modell sollte in einem GIS angeboten werden Bevorzugtes Modell:
 - TOPMODELL

TOPMODEL

- Das TOPMODEL:
 - stellt ein konzeptionelles,
 - physikalisch basiertes Modell dar, welches
 - die r\u00e4umlich/zeitliche Variabilit\u00e4t der in einem Einzugsgebiet ablaufenden Prozesse ann\u00e4herungsweise durch das Konzept der beitragenden Fl\u00e4chen simuliert.

TOPMODEL - Konzept

Konzept der beitragenden Flächen:

- sie sind zeitlich und r\u00e4umlich ver\u00e4nderlichen
- Oberflächenabfluss entsteht dort, wo sich die Quellgebiete durch Sättigung des Bodens aufgrund eines Niederschlagsereignisses ausbreiten.

Hierbei bestehen zwei Möglichkeiten zur Bildung des Oberflächenabflusses:

- der Niederschlag, der auf diese gesättigten Flächen trifft, trägt direkt zum Oberflächenabfluss bei (Direktabfluss),
- und der bodeninnere laterale Abfluss innerhalb der gesättigten Bodenzone, der wieder an der Bodenoberfläche austritt, trägt zum Oberflächenabfluss bei (Rückfluss).

TOPMODEL

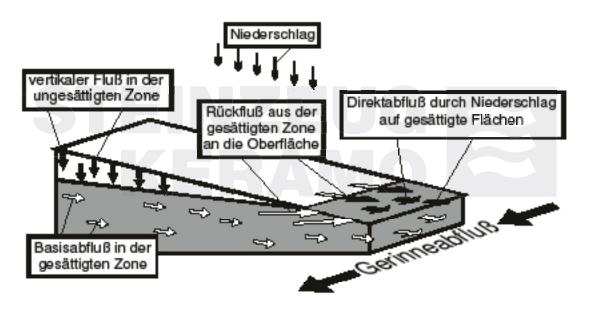
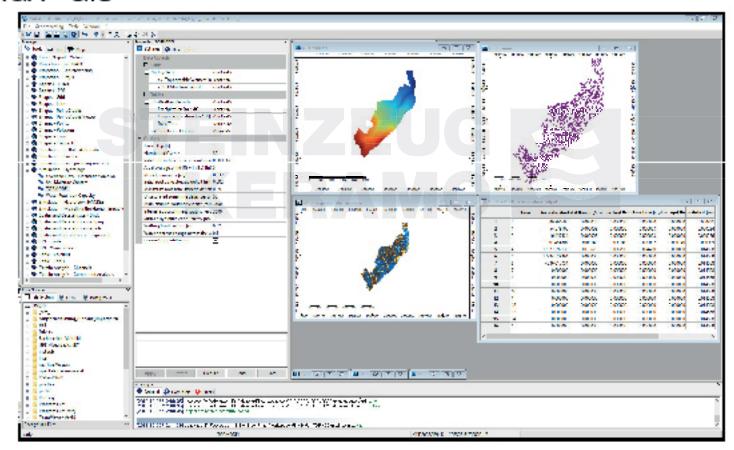


Abb.1.2: Abflußkomponenten beim TOPMODEL mit Basisabfluß, vertikalem Fluß, Direktabfluß, Rückfluß und Gerinneabfluß


Vorgehensweise / Ermittlung der HQ₁₀₀(t) mit dem TOPMODEL

- Datenbedarf / Datenbereitstellung
 - Niederschlag als Ganglinie
 - DGM
- Modellseitiger Parameter
 - Festlegung der Modellparameter
 - Kalibrierung des Modells
 - Ergebnis:

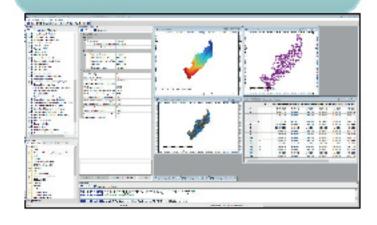
TOPMODELL

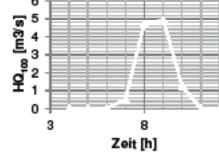
SAGA - GIS

Vorgehensweise / TOPMODELL

Erzeugen der HQ₁₀₀(t) – Ganglinie

Hydro-Meteorologische Daten


• mit KOSTRA $h_N(Ta = 100)$ ermittelt



TOPMODELL:

Kalibrierung (getrimmt auf HQ100)

Durchflussganglinie

Tagung Mühldorf a. Inn

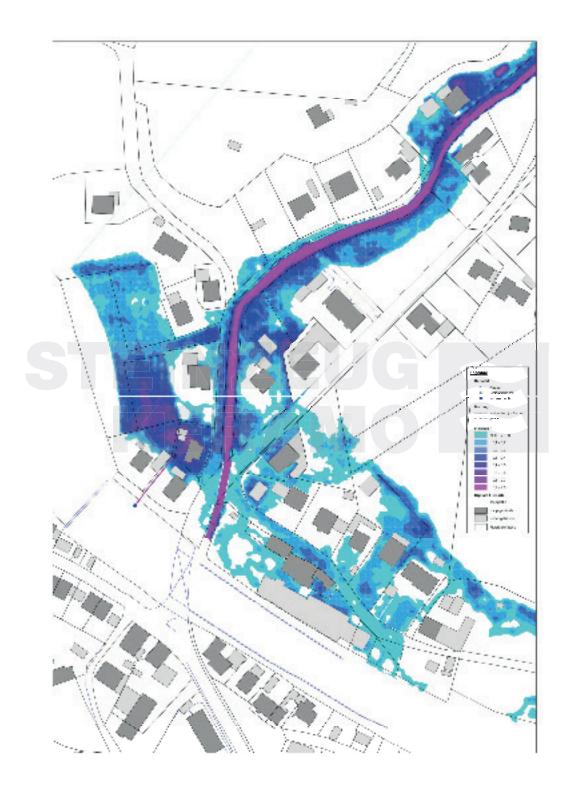
BEISPIEL

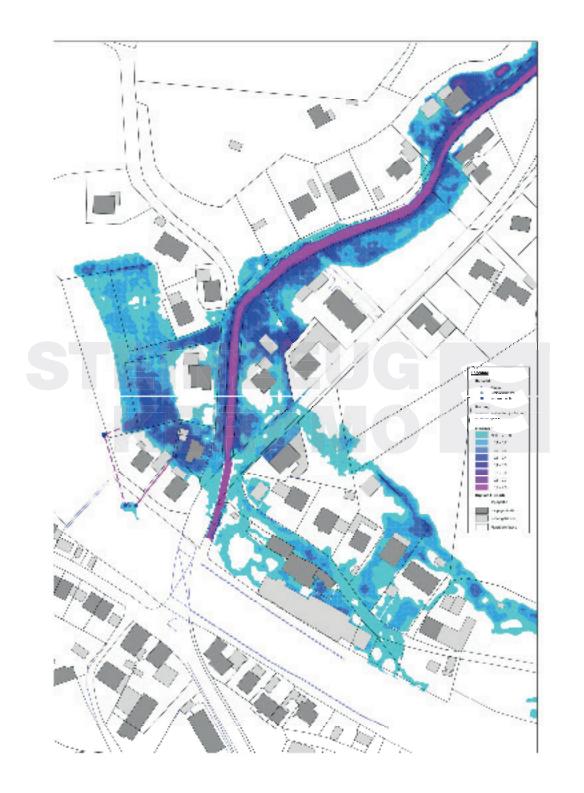

KOMBINATION VON HOCHWASSERSCHUTZ-MASSNAHMEN

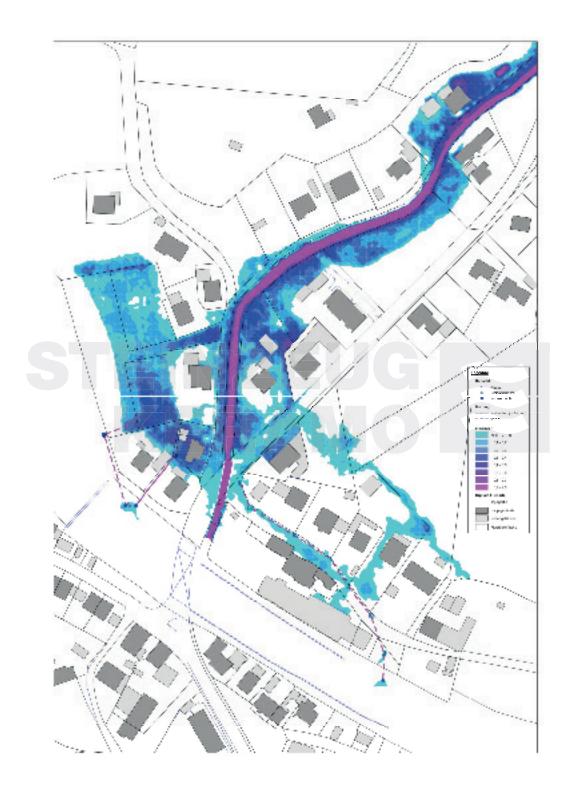
WATZINGER BACH

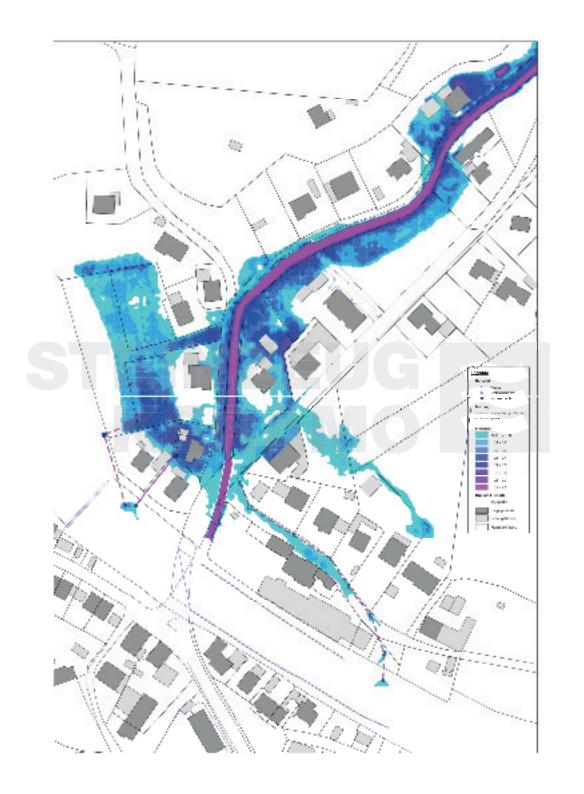
Gde. Winhöring (AÖ)

- Gewässer 3. Ordnung, unterbayer. Hügelland –
 Mündung in die Isen
- EZG: ca. 4 km², ca. 4 % durchschn. Gefälle
- Bachlauf im Siedlungsgebiet als Rechtecksprofil ausgebaut
- Hochwasser bei Starkregenereignissen
- Überschwemmungen im Siedlungsgebiet von Winhöring nördlich der Isen


MODELL


HYDRO-AS_2d


- Berechnet wird Gerinne- und Vorlandabfluß
- Dreiecksvermaschung (TIN Datenmodell)
- Berechnung des IST-Zustands (HQ 100 Ereignis)
- Planung von Hochwasserschutzmaßnahmen in mehreren Schritten

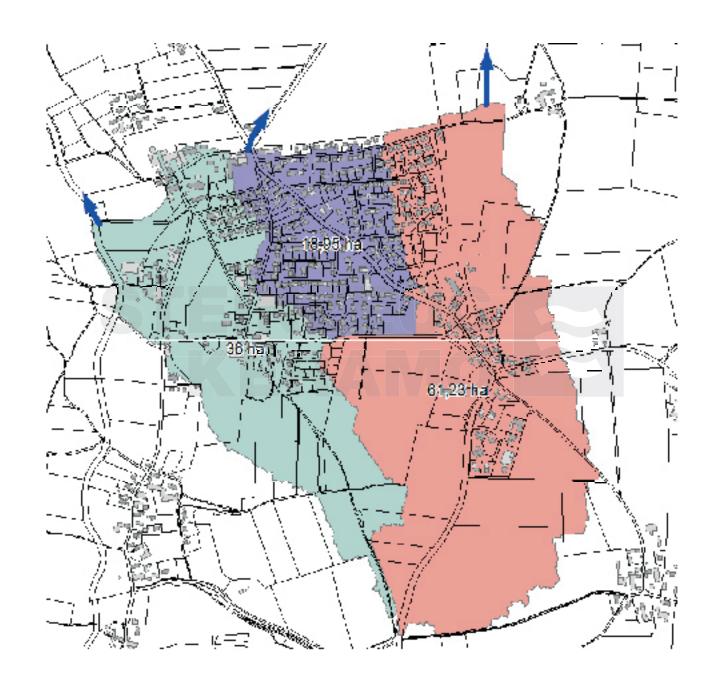

EINGANGSDATEN

- Rasterdaten des Landesamtes f. Vermessung
- Vermessungsdaten:
 - Flußprofile
 - Siedlungsinventar (Zaunsockel, Gartenmauern usw.)
- Durchlässe
- Hochwasserganglinie (HQ 100)
- Landnutzungsdaten Modellrauigkeiten

MASSNAHMEN:

- 1. Ableitungskanal DN 1000 in die Isen
- 2. Straßenentwässerung DN 500 in Erschließungsstraße
- 3. Absenkung der Erschließungsstraße um 10 cm

ERGEBNIS:

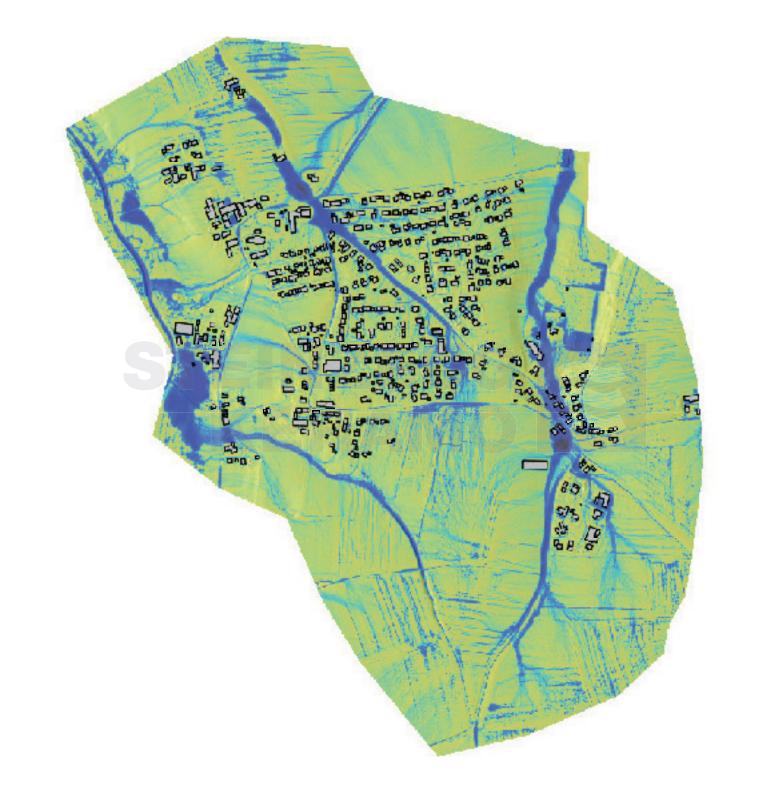

 Deutliche Verbesserung der Hochwassersituation im südlichen Bereich der Siedlung

BEISPIEL

STURZFLUTSIMULATION

GDE. OBERTAUFKIRCHEN (MÜ)

- 11.07.2016 Starkniederschlagsereignis
- Überflutungen in großen Teilen des Ortsgebietes
- Simulation der Sturzflut erfolgte einige Tage vorher
- hohe Aktualität Gegenüberstellung Modell Wirklichkeit


MODELL

SIMWE: SIMULATION OF WATER EROSION

- Modul integriert in Software GRASS GIS
- Berechnung des Oberflächenabflusses
- Vorteile des Modells:
 - Basiert auf regelmäßigem Raster (1 x 1 m)
 - Aufbereitung der Eingangsdaten leicht möglich
 - Kostengünstige Möglichkeit der Gewinnung von Abflussinformationen bzw. Gefahrenpotentialen bei Sturzflutereignissen

EINGANGSDATEN

- Digitales Geländemodell aus Rasterdaten des Landesamtes für Vermessung
- Gebäudegeometrie aus der digitalen Flurkarte
- Regendaten
 - z.B. KOSTRA oder tatsächliches Niederschlagsereignis
 - hier: 100 mm/h
- Geländerauigkeiten
 - aus Landnutzungskarten
 - vereinfacht: mittlerer Rauigkeitswert über gesamtem Gebiet

ERGEBNIS

- Karte der Wassertiefen mit Abflussentwicklung
- Bevorzugte Abflussbahnen werden sichtbar
- Wasseransammlungen in Senken werden sichtbar
- Identifikation von gefährdeten Gebäuden
- Gefahrenpotentiale können dargestellt werden

UNSICHERHEITSFAKTOREN BEI ERGEBNISSEN AUS BERECHNUNGSMODELLEN

WICHTIG

HERSTELLEN DES BEZUGS ZWISCHEN BERECHNUNGSMODELL
UND REALITÄT

KALIBRIERUNG

DOKUMENTATION

WICHTIG

MESSPEGEL, MARKIERUNG VON WASSERSTANDSHÖHEN, DURCHFLUSSMESSUNGEN, REGENMESSUNGEN, FOTOS, FILME,.....

KEINE ABSOLUTE SICHERHEIT

JEDES EREIGNIS SETZT SICH AUS BESTIMMTEN
EINGANGSPARAMETERN ZUSAMMEN. AUF DIESEN GRUNDLAGEN
WERDEN SCHUTZMAßNAMEN BEMESSEN.

WERDEN DIESE EINGANGSPARAMETER ÜBERSCHRITTEN
VERSAGT DIE SCHUTZMAßNAHME

INFRASTRUKTURTAG MÜHLDORF AM INN

HYDROLOGISCHE GRUNDLAGEN, INTEGRALE HOCHWASSERSCHUTZKONZEPTE MODELLIERUNG VON STURZFLUTEN

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT

Stefan Gamperer - Dipl. Ing. Landschaftsplaner, Akademischer Geoinformatiker Alexander Reindl - Dipl. Ing. (FH) Bauingenieur

Dr. Tibor Molnar Landschaftsplaner, Akademischer Geoinformatiker